Pharmacy Pearls

Stephanie Hamel, PharmD, BCTXP

Haley Gutstein, PharmD

What Goes up Must Come Down

Practical Tips for Managing Immunosuppression Drug Interactions

CYP 3A4/5 Drug Interactions

CYP Inhibitors

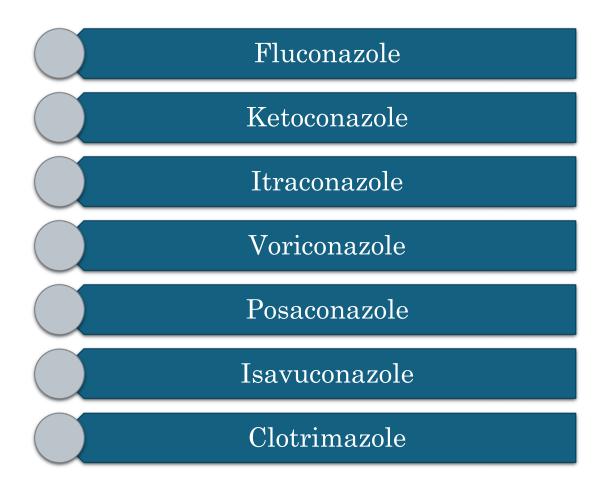
Inhibits
enzyme from
metabolizing
the drug

Increased drug levels in the body

Increase in enzyme metabolizing the drug

Decreased drug levels in the body

When Should You See An Interaction?


Induction

- Requires more time to produce additional enzymes
- Upregulate metabolizing enzymes
- Delay in maximum enzyme induction compared to inhibition

Inhibition

- Consider half-life of inhibitor
- Timing of interaction dependent on when drug reaches steady-state
- Predictable inhibitory effect

Inhibitor Example: Azole Antifungals

Not All Azoles Are the Same!

Variability of interaction

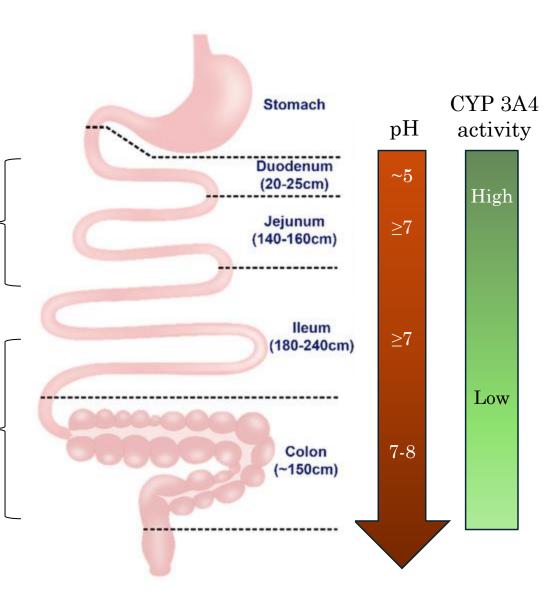
- Itraconazole>ketoconazole
 >voriconazole/posaconazole
 > fluconazole
- Isavuconazole and clotrimazole – less interaction

Clinical Pearls

- Fluconazole doses > 200 mg/day clinically significant
- Voriconazole/posaconazole level can be checked ~5-7 days following initiation to assess concentration

Interaction at Steady-State

Ketoconazole	~24-48 hours
Voriconazole	IV loading dose – Day 3 No loading dose – 5-7 days
Itraconazole	Single dose – Day 3 Multiple doses – 5 -7 days
Posaconazole	~3-5 days
Fluconazole	~3-5 days
Isavuconazole	~1-2 weeks


Treatment Strategies

Ketoconazole	Decrease CNI by ~50%
Voriconazole	Decrease CNI by ~50% Decrease mTOR by ~50-75%
Itraconazole	Decrease CNI by ~50%
Posaconazole	Decrease cyclosporine by ~25% Decrease tacrolimus ~50%
Fluconazole	Dose dependent Consider dose decrease from 30-50%
Isavuconazole Clotrimazole	Monitor CNI levels

Immediate release (IR) tacrolimus [Prograf] site of absorption

Prolonged release (PR) tacrolimus [Envarsus] site of absorption

Does Formulation Play a Role?

Huppertz et al. 2019

Objective	• Investigate whether prolonged release (PR) tacrolimus [Envarsus] is less affected by the strong CYP3A4 inhibitor voriconazole than immediate release (IR) tacrolimus [Prograf]
Methods	 18 healthy white males Four-phase crossover trial Tacrolimus 3mg (Prograf or Envarsus) x 1 dose; voriconazole 800mg on day 1 then 200mg BID x 3 days
Results	 AUC increased 2.62-fold vs 6.02-fold after PR tacrolimus vs IR tacrolimus, respectively (p < 0.001) Less variability in AUC with PR tacrolimus: AUC increase 1.6 to 4.8-fold with PR tacrolimus vs 1.8 to 19-fold with IR tacrolimus
Conclusion	• Effects of voriconazole on tacrolimus levels were smaller and less variable after a PR tacrolimus formulation was administered

Inducer Example: Rifamycins

Treatment Strategies

- Strong inducers of CYP3A4
- Rifampin: Increase CNI 2-fold and monitor levels weekly
- Rifabutin: Increase CNI by 30-50% and monitor levels weekly

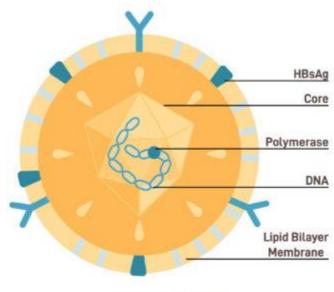
Clinical Pearl: Use rifabutin over rifampin if possible, less interaction

When the Interaction Goes Away...

CYP Inhibitors

- Increase CNI dose upon discontinuation of inhibitor
- Consider half-life of drug as a guide
- TDM ~3-7 days after discontinuation

CYP Inducers


- Decrease CNI dose upon discontinuation of rifamycin therapy
- Interaction will not go away instantly – takes time for the extra enzymes to degrade
- TDM weekly will be important

To B or Not to B

Medications for Hepatitis B Virus Prophylaxis & Treatment

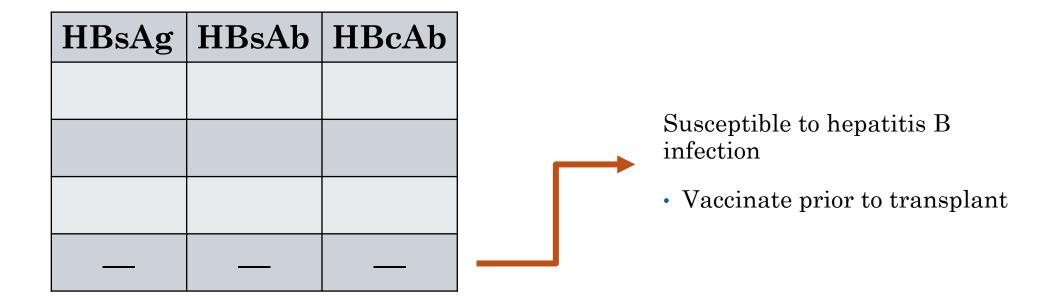
Hepatitis B (HBV) Testing

- Hepatitis B surface antigen (HBsAg)
 - Detected during acute or chronic hepatitis B infection
 - May be transiently positive after HBV vaccination
- Hepatitis B surface antibody (HBsAb)
 - Immunity from hepatitis B infection or immunization
- Hepatitis B core antibody (**HBcAb**)
 - Indicates previous or ongoing hepatitis B infection
 - Persists for life

Hepatitis B

HBsAg	HBsAb	HBcAb
+	_	+

receiving)


HBsAg	HBsAb	HBcAb	
_	+	+	
			L

Resolved hepatitis B infection

- Has immunity from natural infection
- HBsAb may wane with time/immunosuppression, putting patient at risk of HBV reactivation

HBsAg	HBsAb	HBcAb
	+	

^{*} $HBsAb > 10 \ IU/mL$ considered positive after the vaccine series is completed

Tenofovir Products

- Tenofovir disoproxil fumarate (Viread®)
 - o Typical dose: 300mg daily
 - o Renal dose adjustment required in CrCl<50 mL/min
 - o Adverse effects: renal toxicity (including acute renal failure, Fanconi syndrome), decreased bone mineral density
- Tenofovir alafenamide (Vemlidy®)
 - o Typical dose: 25mg daily
 - No renal dose adjustment required (not recommended in CrCl<15 mL/min)
 - o Administer with food
 - Adverse effects
 - High antiviral activity at lower dose --> reduced renal and bone-related adverse effects
 - Increased LDL cholesterol

Entecavir

- Entecavir (Baraclude®)
 - o Typical dose: 0.5mg daily
 - Entecavir 1mg daily recommended in decompensated cirrhosis
 - o Renal dose adjustment required in CrCl<50 mL/min
 - o **Administer on empty stomach**
 - o Adverse effects: lactic acidosis (rare)

Lamivudine

- Lamivudine
 - o Typical dose: 100mg daily
 - o Renal dose adjustment required in CrCl<50 mL/min
 - o Adverse effects: lactic acidosis (rare)
 - Lower barrier to resistance than tenofovir or entecavir, particularly with long-term use (>1 year)
 - Not recommended for initial treatment of chronic hepatitis B infection
 - Reasonable option for hepatitis B prophylaxis if no prior exposure to hepatitis B antivirals

Hepatitis B Reactivation

- Patients with previous exposure to hepatitis B (**HBcAb** positive & **HBsAg** positive or negative) have risk of reactivation when receiving certain immunosuppressive medications
 - o **Rituximab**
 - Doxorubicin
 - o TNF-α inhibitors (etanercept, infliximab, etc.)
 - o Tyrosine kinase inhibitors (imatinib, dasatanib, etc.)
- In co-infected patients, hepatitis C treatment with direct acting antivirals (DAAs) may cause hepatitis B reactivation
 - o Loss of virally-mediated hepatitis B inhibition
 - Risk highest in **HBsAg** positive patients

Let's Take Some Questions!