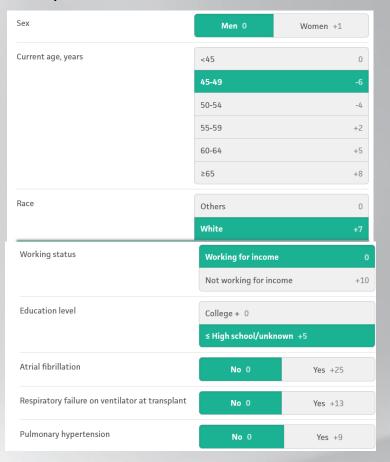
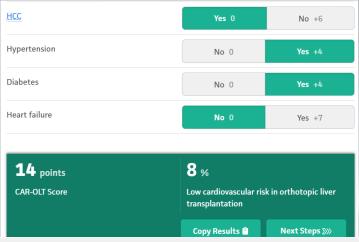
Cardiovascular Complications In Transplant Patients

August 25, 2024


CVD -Transplant

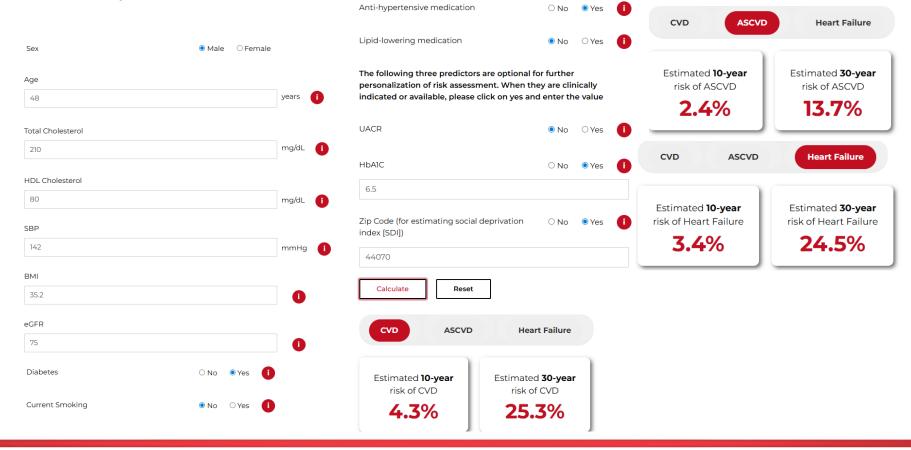

- CVD is one of the leading cause of death post transplant
- MI
- Cardiac Arrest/arrythmias
- Risk assessment is critical
 - Metabolic Syndrome, immunosuppressive therapy, HTN, DM, CKD
 - Smoking
 - weight
 - Previous CVD risk factors pre transplant
 - Family history
 - Donor history
 - ISP

Calculator

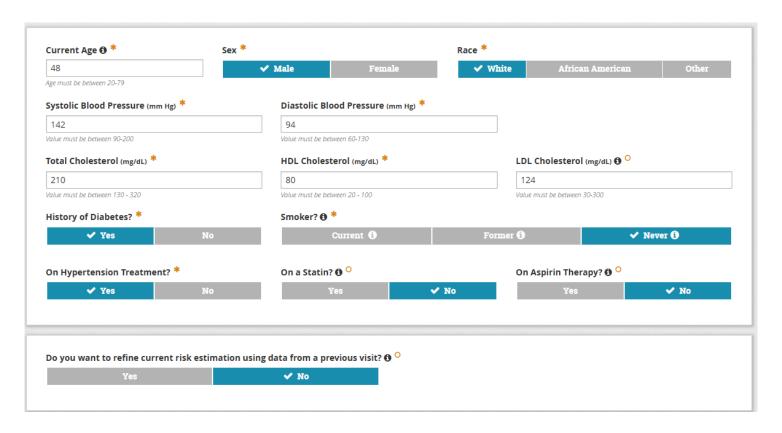
https://www.mdcalc.com/calc/10601/cardiovascular-risk-in-orthotopic-liver-transplantation-car-olt

ADVICE

- Results can be used to counsel patients on risk during informed consent discussions.
- A high score should trigger formal cardiology evaluation and optimisation, not automatic transplant exclusion.


MANAGEMENT

- Optimise modifiable risk factors for all candidates (e.g., glycemic control, blood pressure and lipid management, smoking cessation).
- Very-low and low-risk patients may be able to proceed without provocative cardiac testing.
- For higher scores, consider:
 - o Cardiology consultation.
 - Noninvasive stress imaging +/- invasive cardiac testing.

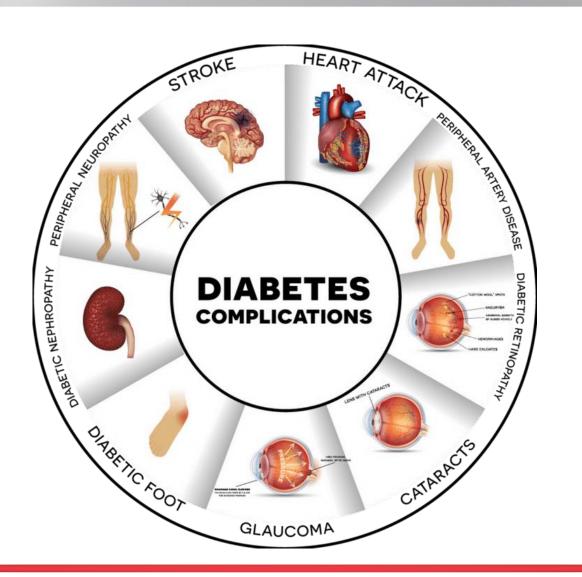

Calculator

https://professional.heart.org/en/guidelines-and-statements/prevent-risk-calculator/prevent-calculator

Calculator

https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/

▼ View Advice Summary for this Patient


- · LDL-C: Statin initiation is indicated in the context of a clinician-patient risk discussion.
- Diabetes: Dietary counseling and ≥ 150 minutes/week of moderate intensity or ≥75 minutes/week of vigorous physical activity recommended. Metformin as first line drug to improve glycemic control to reduce CVD may be considered.
- . Smoking: Assess for tobacco use at every visit and avoid second hand smoke.
- · Aspirin: No justification found in for routine aspirin use in patients with low ASCVD risk.

Lifestyle: The most important way to prevent ASCVD is to promote a healthy lifestyle throughout life. Medications to reduce ASCVD risk should only be considered part of a shared decision-making process for optimal treatment when a patient's risk is sufficiently high. Decisions around the therapies listed above are assumed to be made in the context of ACC/AHA guideline-recommended lifestyle interventions.

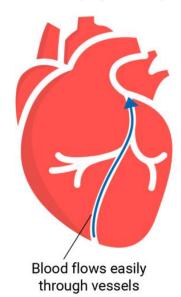
- Pre-existing DM
- Obestity
- Family hx
- Age >45 years of age
- Sex
- Ethnicity
- Diet
- Medications
 - Tacro/steroids decrease insulin secretion
 - mTOR inhibitors increase insulin resistance

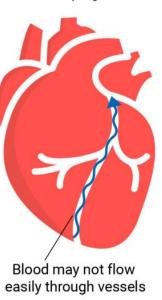
- Post transplant DM
 - 16% at 1 year and 24% at 3 year
 - Due to insulin resistance and secretion defect
 - Should not be diagnosed until 45 days post (Birdwell & Park)
- Sulfonylurease and meglitinides
 - Avoid metformin
- SGLT1/SGLT2
 - Volume depletion and increase urinary tract infection

Diagnosis/Monitoring

- BS monitoring/glycated hgb
- Endocrinology

Management


- Lifestyle changes
- Diet/exercise
- Medication management
- Insulin/oral agents


Hypertension

- Many studies show that HTN is not well controlled in post transplant
 - Kasiske et al. 56% have systolic
 140 at one year post
 - Recommendation is to have <130/80 for patient and graft survival
 - 80-90% in the post kidney world untreated
- Target <130/80
 - Individualized
 - Aggressive

No Hypertension Heart Pumping Normally

Hypertension Heart Pumping Harder

Risk Factors

- Age
- Pre-existing condition
- Ethnicity
- family history
- ISP
- CKD
- Fluid retention
- sleep apnea/obesity
- Donor risk factors

HTN

Complications

- Graft dysfunction
- CAD
- Stroke
- HF, LV hypertrophy
- Reduced patient survival

October 13, 2025

Monitoring

- Frequent measuring
- Medications
- Lab draws

HTN

- Management
 - Lifestyle
 - Diet, exercise
 - Smoking and alcohol cessation

October 13, 2025

- Medication
- Calcium channel blockers
- Ace/ARBS
- Beta-blockers
- diuretics

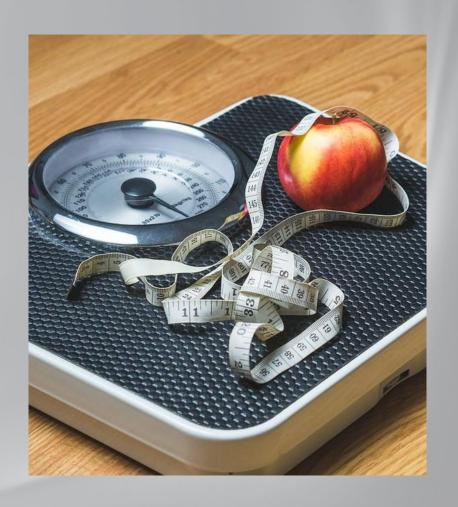
- LDL target variable dependent on type of transplant
- Kidney Disease Improving Global Outcomes suggest all kidney transplant recipients start on a statin.
- Predisposition or ISP
- 18% kidney with borderline/elevated LDH (Bridwell & Park)

Drugs	Side Effects	
Corticosteroids	↑ triglycerides and cholesterol	
Calcineurin Inhibitors	↑ LDL and triglycerides	
	Tacrolimus less severe than cyclosporine	
mTOR inhibitors	↑ triglycerides and cholesterol	

- Baseline prior to transplant
- Fasting lipids
- Screening for other causes
- Low fat, heart healthy diet
- Increase activity
- Optimization ISP
- Medical management

LAB	TARGET	
LDL	<100 mg/dl < 70 mg/dl high risk < 50 mg/dl heart	
HDL	> 40 men and >50 women	
Triglycerides	< 150 mg/dl	

- Diet/Exercise
- Statin
 - Pravachol/crestor preferred
- Ezetimibe
 - Zetia
- Repatha
 - Helps to lower LDL/cholesterol
- Fibrates
 - Lopid, tricor
- Niacin


- Use of mTOR
- Lab monitoring
- Liver function tests
- Side effects
 - rhabdo

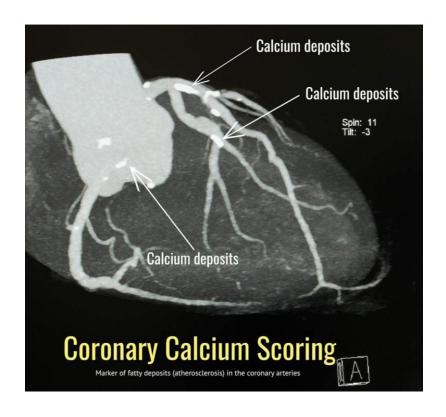
Obesity

- At time of transplant as important as post
- Comes with other complications
 - HTN, DM, Dyslipidemia, metabolic syndrome, inactivity
- Post transplant weight gain 5-10%

October 13, 2025

Obesity

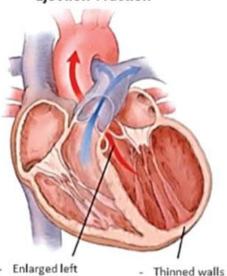
- Diet
- Exercise
- medication

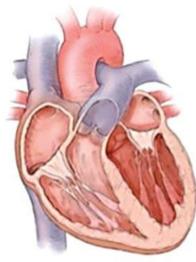


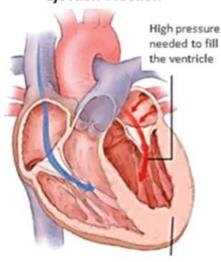
Coronary Artery Disease

- Most common complication
 - Recent study 12% revascularization in the first year
 - Pre transplant troponin levels, increased risk of 30-day mortality post and new CAD post transplant
- Metabolic Syndrome, Immunosuppressive therapy, HTN, DM, CKD
- Risk factors:
 - Age
 - Prior MI or CAD
 - Dylipidemia

Coronary Artery Disease


- Stress testing
 - NM, dobutamine
- Cardiac score
 - CT
- NM perfusion scan
 - TID Transient Ischemic Dilatation
 → LHC
- Cath
 - Lesion to amend
 - Will need DOAIC therapy length dependent on lesion and amount


- Risk Factors
 - Age, CAD, arterial HTN, valvular disease, DM, alcohol use, pregnancy, chemo
- Two types:
 - HF with decreased EF (HFrEF)
 - HF with preserved EF (HFpEF)
- Diastolic Dysfunction pre transplant
 - Increase in HFpEF post
 - Increased risk of rejection/failure
- Systolic Dysfunction
 - Resting EF <55%
 - No increase in CO when exercise, medication, volume


Heart Failure Reduced Ejection Fraction

 Enlarged left ventricle
 Reduced pumping ability Normal Heart

Heart Failure Preserved Ejection Fraction

- Normal or small left ventricle size
- Thickened walls
- Stiff muscle
- Normal pumping capacity

- Weakened muscle

TABLE 2. Comparison of the NYHA classes and ACC/AHA stages of heart failure^{4,5}

NYHA functional classification	Description	ACC/AHA stage of heart failure	Description
Class I	No limitation of physical activity; ordinary physical activity does not cause undue fatigue, palpitation, dyspnea	Stage A	At high risk for the development of HF; no identified structural or functional abnormality; no signs or symptoms
Class II	Slight limitation of physical activity; comfortable at rest; ordinary physical activity results in fatigue, palpitation, dyspnea	Stage B	Developed structural heart disease that is strongly associated with the development of HF, but without signs or symptoms
Class III	Marked limitation of physical activity; comfortable at rest; less than ordinary activity results in fatigue, palpitation, or dyspnea	Stage C	Symptomatic HF associated with underlying structural heart disease
Class IV	Unable to carry on any physical activity without discomfort; symptoms of HF at rest; if any physical activity is undertaken, discomfort increases	Stage D	Advanced structural heart disease and marked symptoms of HF at rest despite maximal medical therapy

- EKG look for prolonged QT interval
 - Increase sudden death when >0.5
 - May need cardiology consult
 - Medications
- Echo may not show any diastolic dysfunction
 - May mask intrinsic changes
 - Some studies have shown increased contractility and EF>65% may predispose patients to CKD
- Dobutamine stress test to look for ischemia

- Diet, exercise, weight
- Medication
 - Diuretics
 - ACE/ARB, ARNI, Betablocker, Aldostersone antagonist
 - inotropes
- Non medical management
 - Implantable defibrillator
 - BiV pacing
 - LVAD
 - Surgery to repair valves

CVD – Transplant

- Identify CVD risk factors
- Identify if CVD is present
- Research/further studies

QUESTIONS

REFERENCES

- Agarwal , A., & Prasad, R. (2016, March 24). Post-Transplant Dyslipidemia: Mechanisms, diagnosis and management . https://www.wjgnet.com/2220-3230/CitedArticles?id=10.5500/wjt.v6.i1.125
- Alexandrou, M.-E., Ferro, C. J., Boletis, I., Papagianni, A., & Sarafidis, P. (2022). Hypertension in kidney transplant recipients. World Journal of Transplantation, 12(8), 211–222. https://doi.org/10.5500/wjt.v12.i8.211
- Birdwell, K. A., & Park, M. (2021). Post-transplant cardiovascular disease. *Clinical Journal of the American Society of Nephrology*, *16*(12), 1878–1889. https://doi.org/10.2215/cjn.00520121
- Cupples, S. A., Lerret, S., McCalmont, V., & Ohler, L. (2017). Core curriculum for Transplant Nurses. Wolters
 Kluwer.
- Neal, J., & Smith, A. (2015, December 24). Cardiovascular risk factors following renal transplant. https://www.wjgnet.com/2220-3230/full/v5/i4/183.htm

